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We need to talk about nonprobability samples
Highlights
As the data revolution gathers pace,
researchers are increasingly relying
on nonprobability samples from meta-
databases, citizen science and other
sources to monitor biodiversity.

The use of nonprobability samples can
lead to biased inference, and seemingly
large nonprobability samples can actually
have very low information content.

A number of recent high-profile disagree-
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In most circumstances, probability sampling is the only way to ensure unbiased
inference about population quantities where a complete census is not possible. As
we enter the era of ‘big data’, however, nonprobability samples, whose sampling
mechanisms are unknown, are undergoing a renaissance. We explain why the
use of nonprobability samples can lead to spurious conclusions, and why seem-
ingly large nonprobability samples can be (effectively) very small. We also review
some recent controversies surrounding the use of nonprobability samples in biodi-
versity monitoring. These points notwithstanding, we argue that nonprobability
samples can be useful, provided that their limitations are assessed, mitigated
where possible and clearly communicated. Ecologists can learn much from
other disciplines on each of these fronts.
ments in the biodiversity literature stem
from the use of such samples, and
the inadequate communication of their
potential weaknesses.

Nonprobability samples can be useful
for the purpose of monitoring biodiver-
sity, provided that their limitations are
assessed, mitigated where possible,
and the almost inevitable remaining
issues clearly communicated.
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Monitoring the biodiversity crisis
There is a scientific consensus that the sixth mass extinction of life on earth is underway [1]. To
understand the scale of the problem, data on the state of biodiversity, and how it has changed
over time, are needed. Collecting and analysing such data is known as biodiversity monitoring
and is an active area of research. As we will argue, however, biodiversity monitoring often rests
on shaky statistical foundations.

There is no census of life on earth
Monitoring biodiversity is typically a matter of descriptive statistical inference (see Glossary).
There is an implied finite population, which comprises all observation units of interest. These units
might be, say, patches of land across a landscape. The researcher wants to infer something
about those population units; for example, the average species richness. Putting measurement
error to one side, it is simple to calculate this quantity if each patch of land has been sampled.
In many cases, however, it is not possible to census all population units. In such situations,
researchers rely on a sample and use sample-based estimators of the population quantities
of interest. In the above example, it would be typical to use the sample mean as an estimator
of the population mean.

Probability samples, nonprobability samples and estimator bias
Broadly speaking, statisticians define two types of sample: probability samples and nonprobability
samples. In a probability sample, the probability that each population unit was included in the
sample is known. The simplest type of probability sampling is simple random sampling (SRS), in
which each population unit has an equal chance of selection [2]. In a nonprobability sample, the
sampling mechanism, and therefore the chance that each population unit was sampled, is not
known a priori.

Many sample-based estimators of population quantities – including sample means and proportions –
are known to be unbiased under SRS [2]. A key property of SRS is that, as sample size increases,
they are likely to be representative of the population (note the distinction between the variable
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Glossary
Descriptive statistical inference: the
process of estimating some quantity
describing a population froma sample of
that population. This can be broadly
contrasted with other inferential goals,
such as prediction or causation.
Design-based inference: a mode of
inference from sample to population.
Design-based inference is most
straightforwardwith probability samples,
because sample inclusion probabilities
can be used to adjust for selection bias.
Design-based inference can be traced
back to the work of Jerzy Neyman in the
early- and mid-20th century.
Design variables: variables that
influence, or are thought to influence,
the probability that a population unit is
sampled.
Design weights: often the inverse of
sample inclusion probabilities. Design
weights are used to correct for
selection bias (as well as issues such
as nonresponse) in design-based
inference.
Estimator: a rule for calculating an
estimate of a population quantity from a
sample. An oft-cited example is the
sample mean, which is an estimator of
the population mean.
Estimator bias: a systematic deviation
of a sample-based estimate from its
corresponding population quantity. In a
technical sense, this can imply different
processes depending on the context,
but it is always the irreducible, or
‘nonsampling’, component of error; that
is, it cannot be reduced simply by adding
more of the same ‘type’ of data.
Model-based inference: a mode of
inference from sample to population. In
model-based inference, a model
thought to describe the variable of
interest in the population is constructed,
and inferences are drawn from this
model. Model-based inference can be
traced back to the work of Ronald Fisher
in the early 20th century.
Representativeness: a common
definition of sample representativeness
is the correlation between an indicator
variable, taking the value 1 if a population
unit is in the sample and 0 otherwise,
and the outcome variable of interest.
Larger correlations equal lower
representativeness. A representative
sample has little selection bias, and vice
versa. In some areas, representativeness
is assessed using ‘R-indicators’, which
are measures of the variability of sample
inclusion probabilities.
representativeness of a single SRS, and the long-run unbiasedness of such samples over
many hypothetical realisations). By representative, we mean that there is little to no correlation
between an indicator variable, taking the value 1 if the population unit is in the sample and 0
otherwise, and the variable of interest [3,4]. If this correlation is ~0, the values of the variable
of interest in the sample are similar to those in the population, and, consequently, sample
averages, proportions and so forth are similar to their population equivalents.

In addition to SRS, it is relatively straightforward to construct unbiased estimators for other types
of probability sample [2]. Recall that in a probability sample, the probability that each population
unit was sampled is known by design. Again, where sample size is not small, these probabilities
can be used to correct for inbuilt unrepresentativeness. For example, rather than estimating a
population total using a sample total, one would instead use the weighted total, where the
weights are equal to the inverse of the sample selection probabilities [2]. Weights of this type
are known as design weights, and using them to construct unbiased estimators is known as
design-based inference.

Matters are more complicated for nonprobability samples. Nonprobability samples are often
unrepresentative of the population, but estimators of population quantities are unlikely to be fully ad-
justable using inclusion probabilities because these are not precisely known. Methods have been de-
veloped to mitigate unrepresentativeness in nonprobability samples, which we review later (see ‘How
can we do better?’), but it is typically very difficult to know how well this has been achieved [5].

Quantity does not necessarily imply quality
While it is challenging to construct unbiased estimators for nonprobability samples, they are fre-
quently used for inferential research on pragmatic grounds [6]. Probability samples, even relatively
small ones, are often very difficult to collect. By contrast, nonprobability samples, even large ones,
are relatively easy to come by. Hence, researchers often justify the use of nonprobability samples
on the basis of data quantity.

Unfortunately, quantity of data is no substitute for representativeness. Meng [4] derived a formula
for the ‘effective’ size of a sample (Box 1). The effective size of a sample is equivalent to the size of
the SRS that would yield an estimate of the population average with the samemean squared error
(MSE), assuming that the sample average is used as the estimator. An important implication of the
formula is that, where a sample is even slightly unrepresentative – that is, there is a correlation
between sample membership and the variable of interest – the effective sample size becomes
much smaller than the actual sample size (Box 1). The formula also shows that as the sampling
rate (sample size divided by population size) increases, bias (i.e., nonsampling error, a.k.a. systematic
or irreducible error) comes to dominate random sampling error.

The formula for calculating effective sample size yields startling results. In his original paper, Meng
[4] analysed a dataset of size n = 2 300 000 on voting intentions for the 2016 US election. He
found that the correlation between sample membership and respondents’ intention to vote for
Trump was a modest −0.005. This seemingly miniscule correlation led to an effective sample
size of ~400 (a 99.98% reduction). More recently, Bradley and colleagues [7] used the same
formula to analyse several surveys of coronavirus disease 2019 (COVID-19) vaccine uptake in
the USA. They showed that the largest (but nonrandom) survey, with 250 000 responses per
week, can produce estimates with the same error as a random sample of less than ten.
Summarising, the authors stated, ‘[o]ur central message is that data quality matters more than
data quantity, and that compensating the former with the latter is a mathematically provable losing
proposition.’
522 Trends in Ecology & Evolution, June 2023, Vol. 38, No. 6

CellPress logo


Box 1. Selection bias and data ‘bigness’

Meng [4] derived a formula relating selection bias to the accuracy of the sample average Yn as an estimator of the

population average YN . As it is not possible to provide the full derivation here, we simply present two relevant equations.
The first shows that the difference between the sample average and the population average is:

Yn
� �

− YN
� � ¼ ρ R;Yð Þ

ffiffiffiffiffiffiffiffiffiffi
1 − f
f

r
σY ½I�

where ρ(R,Y) is the (population) correlation between Y and an indicator variable taking the value 1 if the population unit is in
the sample and 0 otherwise, f is the sampling rate (n/N), and the final term σY is the population standard deviation of Y.
ρ(R,Y ) indicates the direction and magnitude of the selection bias: when ρ(R,Y ) > 0, larger values of Y are more likely to
be in the sample than in the population and vice versa. Where ρ(R,Y ) = 0, this term cancels the others and there is no error.

The second equation gives the ‘effective’ size neff of a sample, defined as the size of SRS that would produce an estimate
of the population average with the same MSE (on average). neff may be expressed as:

neff ¼ f
1 − fð Þ

1

E ρ R;Yð Þ2
h i ¼ n

1 − f
1

E ρ R;Yð Þ2
h i

N
½II�

E[ρ(R,Y )2] is the expectation of the square of ρ(R,Y ) for a given data selection mechanism. E[ρ(R,Y )2] is expressed as an
expectation because ρ(R,Y ) has many possible realisations for a given mechanism. However, where N is large, the
variance in ρ(R,Y ) is typically negligible so E[ρ(R,Y )2] can be substituted by ρ(R,Y )2 [4].

An important implication of this formula is that, where ρ(R,Y )2 deviates even slightly from 0, neff/n (i.e., the relative effective
sample size) decreases with N. In biodiversity monitoring, N is typically very large, so this reduction can be substantial.
Thus, for nonprobability samples where ρ(R,Y) ≠ 0, big data can be (effectively) very small. Figure I demonstrates the
impact of selection bias on the effective sample size of a nonprobability biodiversity dataset.

Calluna vulgaris (L.) Hull

N = 229,772 1 km

grid squares

n = 19,419 1 km grid 

squares

ρ(R,Y) = -0.058

neff = 28

= 0.299

= 0.213

True distribution Sampled cells Sampled cells with occupancy = 1
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Figure I. The effects of selection bias on effective sample size. Here, the population comprises 229 772 1 km
land-containing grid cells in Britain.19 419 cells were sampled by volunteers, who submitted records of vascular plants
to iRecordi via the smartphone app, the website, or indirectly via the iSpot initiativeii from 2000 to 2019. The variable of
interest is the occupancy {1,0} of common heather Calluna vulgaris. True occupancy was estimated from the union of
the UKCEH Land Cover Map [40], 1 km Atlas data (2000–2019; [36]), and the UK Countryside Survey 2007 plot data
[41], constrained using the plant’s 10 km distribution 2000–2019 [36]. This example assumes no measurement error.

Figure I highlights an interesting feature of Meng’s formulae as applied to biodiversity monitoring: the area of the patches of
land – their resolution – affects n, N and hence the sampling rate f = n/N. In our example, working at a coarser resolution, for
example, 10 km2, would increase f. This would be likely to reduce the error in our occupancy estimate and bring neff closer
to n [36].
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Selection bias: selection bias induces
a correlation between an indicator
variable, taking the value 1 if a population
unit is in the sample and 0 otherwise,
and the variable of interest. Hence,
selection bias results in unrepresentative
samples. If not dealt with, selection bias
leads to estimator bias.
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Figure I in Box 1 illustrates the effect of selection bias on our ability to accurately estimate mean
occupancy of the common heather Calluna vulgaris in Britain. The selection bias, or the
correlation between samplemembership and occupancy, is −0.058. The sample-based estimate
of mean occupancy is 0.213, which is a substantial underestimate of the populationmean, 0.299.
The effective sample size, 28, is 99.86% smaller than the actual sample size of 19 419!

The estimate of mean occupancy is not just wrong, but precisely wrong. The apparent sample
size is large, which means that the normal approximation of the 95% confidence interval for the
estimate of mean occupancy is narrow. Consequently, as we show in Box 2, it has virtually no
chance of covering the true value. This is the big data paradox: ‘the more the data, the surer
we are to fool ourselves’ [4].

Use and misuse of nonprobability samples in biodiversity monitoring
As we enter the era of ‘big data’, ecologists have access to more (and larger) nonprobability
samples than ever before. Examples include digitised museum and herbarium collections [8],
distribution data collected for species atlases, citizen science data, and newer types of data
from various sensors (e.g., acoustic and radar; [9]). Much of these data are available through
data aggregators and meta-databases such as GBIF (gbif.org) and BioTIME [10]. Probability
samples, too, may be held in data aggregators, but these become nonprobability samples
when combined with additional data. Given the various challenges associated with inference
from nonprobability samples, it is not surprising that the increasing availability of these for
research has led to some high-profile disagreements in the biodiversity literature (Table 1).

The disagreements in Table 1 arguably all relate to issues of sample representativeness, with the pos-
sible exception of the reply to [12]. Soroye and colleagues [12] used an occupancy-detection model
to estimate changes in the range sizes of bees in North America and Europe. Occupancy-detection
models require data on detections and nondetections, and the published criticism related to how
nondetections were inferred. We, too, are sceptical about the models of Soroye et al. [12], but sug-
gest that the most pernicious issue is likely to be the lack of representativeness in their data, not the
precise way that nondetections were inferred (cf. [13]). We should remember that any model-based
estimates, whether of a data selectionmechanism (e.g., an observation process) or of an ecological
state variable, can suffer from bias. Occupancy-detection models use information from repeat
visits to the same area to estimate the probability that a species is detected given that it is pres-
ent, a form of measurement error. These estimates could themselves be biased if the sites or
visit types are not representative of the typical data-generating process [14]. We find that this
is rarely, if ever, investigated by those applying occupancy-detection models to nonprobability
samples, despite the fact that this is also a model of a real-world process.

The distinction between measurement error and representativeness can also be illustrated using
Meng’s formula for effective sample size (Box 1). The formula shows that, for a given selection
bias, effective sample size is lower in the presence of measurement error [7]. This is not to say
that removing measurement error would bring effective sample size back to parity with actual
sample size. In our example (Box 1), we assume no measurement error, but a small amount of
selection bias causes the effective sample size to be 99.86% lower than the actual sample
size. This clearly demonstrates that dealing with measurement error alone does not fix issues
caused by a lack of representativeness.

How can we do better?
Given such high-profile disagreements, the potentially wasted research time [15,16] and the clear
issues with small effective sample sizes and unrepresentativeness, one might reasonably argue
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Box 2. The big data paradox

In Box 1, we demonstrated that the effective size neff of a biased sample, defined as the size of the SRS that would give an
estimate of the populationmean with the sameMSE on average, is much smaller than its apparent size n. That is not to say
that the estimate from the large, biased sample is as ‘good’ for inference as that from a SRS of size neff. The confidence
interval for the estimate from the biased sample of size n will be misleadingly small relative to that for the SRS of size neff
because neff < n. We have already seen in Box 1 that, where there is selection bias, the confidence intervals are centred
on the wrong answer, which means that the tighter confidence interval for the larger sample is more likely to miss the truth.
This is the big data paradox: ‘the bigger the data, the surer we are to fool ourselves’ [4].

To demonstrate the big data paradox, we return to the example from Box 1. We simulated 1000 SRSs of size neff (28), and
1000 samples of size n (19 419) with ρ(R,Y ) = −0.058. For each sample, we calculated a 95% confidence interval for the
mean occupancy estimate using the normal approximation. 94.4% of the SRS confidence intervals actually covered the
true value, whereas none of the biased samples’ confidence intervals covered the true value. That is, the large but biased
samples gave us false confidence in our estimate, which turned out to be precisely wrong. The 95% ‘confidence’ interval is
truly 0%. Figure I, which shows the distributions of the estimates of mean occupancy and squared error from the simulated
samples, demonstrates this clearly.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Density plots showing the distributions of two statistics from 1000 simulated SRSs of size neff = 28
(small SRS) and 1000 of size n = 19 419 with ρ(R,Y ) = –0.058 (large biased). Panel A shows the estimates of
mean occupancy; the broken line denotes the true value, 0.3. Panel B shows the squared differences between the
sample-based estimates of mean occupancy and the population mean. It also shows the MSE from each set of
simulations (broken lines), which are very similar so hard to distinguish. These converge to the same value with
increasing simulation number. Abbreviations: MSE, mean squared error; SRS, simple random sampling.

The interested reader should consult Meng [4], who demonstrated the big data paradox analytically. His analysis is based
on the z score. Under the normal approximation, the z score denotes the half width of the confidence interval, in units of
standard deviations, needed to obtain a given level of coverage. Meng shows that the z score needed to cover the true
value is approximated by

ffiffiffiffiffiffiffiffiffiffiffiffi
n=neff

p
, which is typically much larger than conventional values (e.g., 1.96 for 95% coverage).

In our example,
ffiffiffiffiffiffiffiffiffiffiffiffi
n=neff

p
= 26.34.

All the code and data needed to reproduce the analyses here and in Box 1 can be found at https://github.com/robboyd/
selectionBiasEffects.
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that ecologists should stop using nonprobability samples for the purpose of monitoring
biodiversity. Indeed, some researchers essentially argue from this standpoint, and it is not
unusual to see such samples written off as ‘unscientific’ (e.g., [17,18]). We do not fully accept
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Table 1. Nine recent examples of high-profile biodiversity research papers with responses.a We have chosen examples based on our reading rather
than a systematic search for disagreements. Issues with which respondents voiced concerns have been divided by us into three main sampling do-
mains: geography, the environment, and taxonomy/others [11]. The final column (‘Issues mentioned…’) categorises the original paper as to
whether the issues of sample representativeness were clearly acknowledged in either the title, abstract, or the paper’s main body. The categories
are: Y (Yes), N (No), and P (Partially). ‘Partial’ recognition can either be due to the fact that unrepresentativeness was mentioned for some domains
but not others, or because of a lack of recognition that a bias mitigation strategy was likely to have weaknesses, as highlighted by the given response.
Note that we do not review any potential weaknesses in the ‘Responses’ here, as we simply intend to demonstrate that there have been disagree-
ments concerning sample coverage

Original paper Response Geographic domain Environmental domain Taxonomic/other domain Issues mentioned
in title/abstract/
main body?

Bruelheide
et al. [42]

Christensen et al. [43] – Change in the biotope
(environmental domain)
focus between the survey
periods generated
incomplete data. The
method to handle these
gaps while assessing
trends was not sufficient,
leading to a systematic
underestimate of declines.

– N/P/P

Crossley et al.
[44]

Welti et al. [45] (W)
Desquilbet et al. [46] (D)

– Several datasets used to
assess species trends over
time are from experimental
sites (for example, a site
where a target species was
being systematically
removed) or have
inconsistent sampling
methods over time.

Both W and D, note that
non-insect taxa were
included in the analysis
despite the taxonomic
domain of interest being
restricted to insects.

N/Y/Y

Hallmann et al.
[47]

Saunders [48] (S)
Vereecken et al. [49] (V)

S notes a lack of repeat
sampling at the same
locations, potentially limits
the ability to understand
the true extent of declines.

S also notes that sites were
restricted to small nature
reserves.

V raise concerns about this
paper (and Lister and
Garcia [50]), where biomass
is used as a proxy for
declines in biodiversity and
the services they provide.
V show that the relationship
between biomass and
various biodiversity
metrics/indicators vary with
habitat type.

Y/P/Y

Leung et al.
[51]

Murali et al. [52] - Murali et al. [52] note
environmental bias in the
populations included in the
Living Planet Index (LPI),
where populations inside
protected areas are
significantly
over-represented.
Therefore, the declines
revealed in the LPI are likely
to be worse at a global
scale (the target domain of
the LPI).

Murali et al. [52] also note
that if the most extreme
increasing vertebrate
populations are excluded
then the original LPI results
remain broadly similar.

N/N/Y

WWF [53] Leung et al. [51] – – LPI estimates mean decline
>50% for vertebrates since
1970. Leung et al. show
that this is driven by <3% of
the vertebrate populations
included in the LPI; if
excluded the mean trend
becomes positive.

P
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Table 1. (continued)

Original paper Response Geographic domain Environmental domain Taxonomic/other domain Issues mentioned
in title/abstract/
main body?

Newbold et al.
[54]

Martin et al. [55] – Concerns about apparent
underestimated losses in
the biodiversity intactness
index, likely driven by
significantly differing levels
of human impact on the
baseline ‘primary
vegetation’ sites used in
the model to represent
pristine condition.

– N/N/P

Sánchez-Bayo
and Wyckhuys
[56]

Saunders [48]
Simmons et al. [57]

Title states ‘worldwide
decline’, replies highlight
concerns around strong
European and North
American bias in the studies
included in the review.

– Many insect groups are
completely absent from the
analysis, for example,
cockroaches, termites, and
many fly and beetle families.
Also the choice of search
term (declin*) for the review
could lead to bias in the
subset of results, given the
focus was ‘all long-term
insect surveys conducted
over the past 40 years…’

N/N/P

Soroye et al.
[12]

Guzman et al. [13] Methodological issue where
absence was inferred
despite no evidence the
location was visited, yielding
biased estimates of decline.
Furthermore, there was a
large reduction in site visits
between the two major time
periods, particularly in
North America and
Southern Europe.

– Species modelled across
the entire geographic
scope of the study,
effectively assuming North
American species may
have been present at
European sites, but had
simply gone undetected,
and vice versa for
European bees at North
American sites.

N/N/P

van Klink et al.
[58]

Jähnig et al. [59] (J)
Audisio et al. [60] (A)
Scholl et al. [61] (S)
Murray-Stoker and
Murray-Stoker [62] (M-S)
Desquilbet et al. [63] (D)

D highlights geographic
bias in the modelled data
with 76% of the studies
covering the USA and
Europe, despite a global
geographic domain of
interest. J also note the
restricted nonrandom
geographic representation
of the study. A total of five
datasets cover Africa,
South America, and large
parts of Asia.

S notes that many of the
datasets included in the
analysis are from studies
examining insect
responses to recent
perturbation, and therefore
are more likely to reflect
population recovery.

J, A, S, M-S, all note that an
increase in insect
abundance should not be
interpreted as a positive
ecosystem response. This
could be due to an increase
in common, pollution-
tolerant species, while
overall richness declines.
The domain of interest is
insects (the title stating
‘insect’ abundance).
However, D show that
crustacean, mollusc, and
worm data were included in
the analysis. They also note
that stress-tolerant species
were over-represented.

N/N/P

aThe LPI is a report: the P here refers to the main body of the report.
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this rather harsh view, although we have some sympathy with it. Elsewhere, statisticians working
on survey sampling consider nonprobability samples as almost a fact of life rather than an
indictment and have embraced the resulting inferential challenges [5]. We suggest that many
of the potential pitfalls of nonprobability samples could be avoided by formal assessments of
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the risk-of-bias (RoB), clear and honest communication, and mitigation (to the extent possible)
of the unrepresentativeness that is typical of such samples in ecology. Much can be learned
from other disciplines in each of these areas (see Outstanding questions).

Formal risk-of-bias assessments
The field of medical research has arguably led the way in terms of assessing and documenting
the types of issues we have raised: qualitative RoB assessments, for example, are typically
required for primary studies and evidence synthesis in this area (Table 2). These often focus
on the impact of bias on causal inference (e.g., in studies on medical interventions; [19]), but
the principle can equally be applied to sampling, where the potential for bias relates to system-
atic differences between sample and population, rather than between treatment and control
[20]. Simons and colleagues [21], for example, proposed the inclusion of a ‘constraints on
generality’ statement within all primary psychological research papers, with the aim of highlight-
ing the extent to which experimental findings on particular groups are likely to be generalisable.
Boyd and colleagues [11] developed a similar initiative for biodiversity time trends, encouraging
researchers to complete a formal ‘Risk-Of-Bias In Temporal Trends’ (ROBITT) assessment
when publishing such descriptive studies (see also [22] for a broader discussion of generality
in ecology). Table 2 lists examples of similar RoB tools across disciplines, including information
on uptake.

Mitigation
Statisticians working on survey sampling problems have developed methods to adjust for
unrepresentativeness in nonprobability samples. These methods generally come under the banner
of ‘model-based inference’, which may be contrasted with the design-based approach often
used for probability samples (model-based approaches can also be used with probability samples,
andmay be preferable to design-based inference in some cases; [23]). The key distinction between
these modes of inference is the way in which the population is treated: in design-based inference,
the population values are treated as fixed (the random element is the sampling); in model-based
Table 2. Examples of qualitative RoB tools for different types of primary study-level assessments across disciplinesa

Tool Field Study/data type Details Community promotion Refs Citationsb

Cochrane
RoB tool

Medical
research

Randomised controlled
trials of medical
interventions

Used to qualitatively stratify
meta-analyses according to
RoB

Assessment of RoB is
regarded as an essential
component of a systematic
review in this area

V1: [64];
V2: [19]

>40 000
[19]

CEE Critical
Appraisal Tool

Environmental
management

Experimental/quasi-
experimental studies

For qualitative assessment of
RoB across different study
designs used in the research
area

To assist environmental
evidence synthesisers
conduct critical appraisal

V0.3
(prototype):
[65]

2

Constraints
On Generality
(COG) tool

Psychology Any inferential study Engenders clear definition of
the statistical population of
interest and assesses
external validity

Requested by some
psychology journals as a part
of good practice in open
science [66]

[21] 624

PROBAST Medical
research

Predictive modelling
studies of diagnoses
and prognoses

Used at either the primary
research or systematic review
stage

Endorsed and recommended
by journals in the area

[67,68] 1136

ROBINS-I Medical
research

Nonrandomized studies
of medical interventions

Compares data to that of a
hypothetical randomised trial

Endorsed and recommended
by journals in the area

[69] 6787

ROBITT Ecology Descriptive inference,
especially temporal
trends

Assessment of potential
representativeness across
relevant study domains

None to date [11] 2

aAbbreviation: RoB, risk of bias; V, version.
bCitation numbers estimated by Google Scholar (1 September 2022) where not otherwise attributed.
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Outstanding questions
Is the use of nonprobability samples
cost-effective?
It could be argued that we are in a vicious
cycle: if researchers continue to assert
that it is possible to monitor biodiversity
accurately using highly unrepresentative
samples, then probability sampling is
less likely to be funded.

Will new types of biodiversity data, for
example, from acoustic, radar, and
other sensors, make issues of repre-
sentativeness better or worse?
These sensors have the potential to
produce unprecedented quantities of
data, but are likely to suffer from issues
of representativeness. For example,
acoustic monitoring stations could still
be placed in an unrepresentative set of
locations, and radar can only detect
species above a particular size.

How can we incentivise communication
of the RoB and unrepresentativeness in
scientific papers?
High-impact journals seek eye-catching
results, sometimes at the expense of
rigour and clarity. If understanding the
true state of our knowledge about reality
is the goal, then the communication of
such uncertainties has to improve.

What other methods for making in-
ferences from nonprobability samples
exist, and how reliable are they with real
data?
Disciplines such as political science, ep-
idemiology, and applied statistics have
investigated methods for making infer-
ences from nonprobability samples (or
analogous methods for causal
estimands). How many are likely to be
suitable for ecology, and what should
users report to fully communicate their
likely final accuracy to the reader?

What other opportunities does the
honest representation of uncertainty in
biodiversity science present?
For example, expert assessments of
the representativeness of aggregated
biodiversity data, or other nonprobability
samples, may provide additional oppor-
tunities for taxonand field-based experts
to contribute to the ongoing data
science revolution.
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inference, the population values are treated as a realisation of a stochastic data-generating process
[24,25]. If this data-generating process, the model, can be recovered from the sample, then it can
be used to draw inferences about the population [6,26,27].

Of course, there is a risk that a model constructed from a sample will not extrapolate well to
nonsampled population units. To increase the chances that the model is representative of
nonsampled units, design variables, thought to explain the sample selection process, can
be included as covariates [26]. Alternatively, models can be used to estimate sample inclusion
probabilities; these can be used to construct designweights, enabling the researcher to proceed in a
similar way to design-based inference [28]. This sometimes is referred to as ‘quasi-randomisation’
[6] and is similar to propensity score weighting in causal inference [20].

Some attempts have been made to correct for the unrepresentative nature of big biodiversity
datasets. In the Living Planet Index – an indicator of vertebrate population trends – the contribution
of each biogeographic region to the global trend is weighted by an estimate of regional species
richness [29]. Johnston and colleagues [30] estimated the probability that birds were searched
for across spatial units in Great Britain; they then used these estimates to weight the likelihood
functionwhen fitting a regressionmodel predicting species’ occupancy. Maxent, a popular species
distribution modelling algorithm, includes an option to ‘factorBiasOut’ [31]. The user provides
information on sampling effort as input, and this is used to adjust the estimates of species’ habitat
suitability. These contributions are a good start for biodiversity science, but they need to become
routine practice.

It should also be remembered that bias mitigation is not guaranteed to succeed, and that
‘success’ can be very difficult to evaluate [5,6]. For example, Boyd and colleagues [32] found
that species distribution models (SDMs) fitted using a standard method to correct for sampling
effort, the target group approach [33], were often rated as ‘poor’ by taxon experts. In some cir-
cumstances, statistical correction procedures have even been shown to make SDM predictions
worse [34].

Communication
Even where bias mitigation strategies successfully reduce the RoB, it is unlikely that they
will completely eliminate it: the remaining risk should be clearly communicated to readers
and data users [35]. Issues of representativeness should also be conveyed in paper titles
and abstracts, or at the least these should not be actively misleading through the omission
of key qualifications (Table 1; see Outstanding questions). An example of good practice
would be to specify the geographic and taxonomic extents of a study in its title, rather
than letting the reader assume that the conclusions are more widely applicable. Researchers
who understand a dataset, and the phenomenon being studied, should be able to inte-
grate both bias-related and ecological factors when discussing results (e.g., see [36]).
The RoB could also be communicated graphically, as in health research [37]. Similar
approaches have recently been proposed for use with ecological indicators and species
trends [38].

Concluding remarks
The word science ultimately derives from the Latin verb scire, ‘to know’, but do the types of
biodiversity studies and approaches discussed here really yield accurate knowledge? It is difficult
to know unless, as readers, we are presented with honest appraisals of the potential RoB and
appropriate sensitivity analyses. As the statistician John Tukey opined towards the end of his
career, ‘[t]he combination of some data and an aching desire for an answer does not ensure
Trends in Ecology & Evolution, June 2023, Vol. 38, No. 6 529
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that a reasonable answer can be extracted from a given body of data’ [39]. Papers, their titles,
and their abstracts should all represent this uncertainty, and journals should not give authors a
free pass on these in the pursuit of ‘impact’ and publicity. This will likely require a step change
in the incentive structure for scientific publishing and funding ([15]; see Outstanding questions).
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